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Evolutionary Fields Can Explain Patterns of High Dimensional Complexity in Ecology
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One of the properties that make ecological systems so unique is the range of complex behavioural
patterns that can be exhibited by even the simplest communities with only a few species. Much
of this complexity is commonly attributed to stochastic factors which have very high-degrees of
freedom. Orthodox study of the evolution of these simple networks has generally been limited in
its ability to explain complexity, since it restricts evolutionary adaptation to an inertia-free process
with few degrees of freedom in which only gradual, moderately complex behaviours are possible. We
propose a model inspired by particle mediated field phenomena in classical physics in combination
with fundamental concepts in adaptation, that suggests that small but high-dimensional chaotic
dynamics near to the adaptive trait optimum could help explain complex properties shared by most
ecological datasets, such as aperiodicity and pink, fractal noise spectra. By examining a simple
predator-prey model and appealing to real ecological data, we show that this type of complexity
could be easily confused for or confounded by stochasticity, especially when spurred on or amplified
by stochastic factors that share variational and spectral properties with the underlying dynamics.

PACS numbers: 87.23.Kg,87.23.Cc,87.10.Ed

I. INTRODUCTION

Complexity in ecological data is characterized by long
and short-term variations in behaviour across a wide
range of time-scales, from generations to speciations,
which are often difficult to predict. These erratic os-
cillations are commonly attributed to a combination of
density-dependent, demographic and environmental fac-
tors, including variation caused by human intervention
[1]. However, high-dimensional deterministic effects can
be difficult to distinguish from high or infinite dimen-
sional stochasticity, especially when data sets are rela-
tively small (as is common in ecology). These patterns
of variation have characteristic spectral compositions [2]
and are often fractal in nature [3]. Field-based models of
systems with many constituent particles have been used
to understand unpredictable and fractal systems found
in physics [4–6], and were central to the development of
complex systems research [7]. We ask whether a field,
mediated by interacting individuals in evolving popula-
tions, could adequately describe some of the properties of
ecological systems seen in nature by qualitative analysis
of the field-based system as a whole and at the population
level.
Dercole et al. [8, 9] were the first to demonstrate a

minimal adaptive ecological network, comprising three
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co-evolving species, prey, predator and super-predator,
in which red queen dynamical chaos in the co-evolution
of traits leads to an increase in complex behaviour at the
population level [10, 11]. However, slower, first order evo-
lutionary dynamics constrain the complexity, period and
magnitude of such chaotic oscillations. This results in
part from fundamental properties of the so-called canon-
ical equation in adaptive dynamics (AD) which admit
only first order solutions in trait space [12, 13], thereby
under-specifying some of the variability in ecological time
series due to adaptation. In so doing, classical AD ig-
nores the potential phenomena of momentum and iner-
tia during trait evolution, which has been well supported
by evolutionary theorists [14]. The evolutionary field
formulation represents a higher order approach to trait
adaptation, which can describe much of this complex-
ity in even the simplest predator-prey systems. It does
this in purely adaptive terms through high-dimensional
trait-based chaos, which can arise from even one to two
traits. Our proposition therefore calls into question the
orthodoxy of simple, low dimensional trait dynamics to
adequately capture complexity (beyond purely periodic
dynamics) and apparently random variation in ecological
networks.

The debate over the origin of variability in ecological
time series has been ongoing since chaotic fluctuations
were first observed in simple models of logistic popula-
tion growth [15]. Since then, a vast array of models have
been produced in an attempt to characterise the most
important elements of the erratic ecological time series
and to ascertain the deterministic or stochastic nature of
these complex signals [16–19]. Decades later debate still
rages as to the very definition of chaos and noise in ecol-
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ogy [20, 21], however much work has been done to suggest
that explaining factors such as density dependence and
persistent long-term autocorrelation will be necessary to
produce a complete description of ecological dynamics
[22, 23].
If higher order, high-dimensional deterministic dynam-

ics are responsible for a portion of the apparent stochas-
ticity seen in ecology, then such dynamics should share
key characteristics with these stochastic processes. Ac-
cording to work by Halley and Inchausti [24], as much as
92% of ecological time series exhibit spectral reddening or
pink shift, the long-term pattern of increasing variation
over time seen in ecological data. Coloured noise models
have often been used to explain these typical patterns in
ecological data [23]. Stochastic noise processes and, in
particular, coloured noise, share many important prop-
erties with chaotic dynamics, including finite correlation
dimensions [3] and even positive Lyapunov exponents in
some cases [25]. Coloured noise is characterized in terms
of its spectral properties; however, certain dynamical sys-
tems have frequency spectra which are qualitatively simi-
lar to noise [26]. In addition, spectral reddening is seen as
the hallmark of self-organised criticality in both physics
[27, 28], and more controversially in ecological models
[29–31].
We show that selective field forces, acting at a distance

in trait space, may be enough to superficially mimic many
of these stochastic properties as well as attain a level of
complexity comparable to real ecological data in the case
of a simple predator-prey system. In Sec. II we present
a formal justification of the model framework and pa-
rameters, followed by (in Sec. III) an exploration of the
field model’s dynamical and fractal chaotic behaviour in
the chaotic, transient and aperiodic regimes. Here, we
look specifically at intra-specific competition because of
its established role in triggering instabilities and chaotic
dynamics in population models [15, 32] and its impor-
tance in the variability of population data [33]. In Sec.
IV we use historical field data on Oryctolagus cuniculus,
the European rabbit in Britain [34] and Lynx Canadensis,
the Canadian lynx [35] to determine whether the model
fits with the qualitative behaviour of ecological systems.
This was further investigated and tested in Sec. V using
methods based on spectral analysis and the prominence
of pink noise in ecological data with concluding remarks
and further recommendations in Sec.VI.

II. MODEL JUSTIFICATION AND

FORMULATION

The model relies on density-dependence as the primary
determinant of biological interaction frequency, both at
the population and, by implication, at the evolutionary
level. This mass action approach underpins classical and
modern theories in physics (e.g. gravitational and solid
state physics [36]) and population ecology (e.g. Lotka-
Volterra and AD models [37]). The evolutionary field

model extends these ideas into evolutionary ecology by
considering each biotic interaction as an exchange of fit-
ness information between populations. An understand-
ing of the model relies on interpreting individuals inter-
acting within and between species, as mediators of an
evolutionary force which is translated to adaptive change
in a generalized trait space (an abstract representation of
multiple independent, continuous traits). The model is
also partially motivated by recognising the role played
by density-dependence in both stochastic and dynami-
cal complex behaviour in ecology (e.g. in inducing pop-
ulation level chaos in classical ecological models [17]).
However, density considerations only describe the fre-
quency, not the strength or type of individual interac-
tions between members of two species. Both competitive
and antagonistic interaction strengths have largely been
measured in the past by trait matching [38], in which dis-
tances between individuals’ traits have some bearing on
the strength of their interaction. This is motivated by the
assumption that trait matching translates into stronger,
more direct competition and more efficient consumption,
or cooperation (in the case of mutualistic interactions).
This does not mean that the two species are necessarily
similar in phenotype as the traits relevant to each species
in the interaction could differ in type or scale.
An appropriate measure must thus be chosen to quan-

tify the degree of trait matching in a continuous trait
space. The functional form of the measure is based on the
concept of assortativity used in other adaptive dynamics
models [39–42]. In assortative models trait matching is
measured as a Gaussian function of interaction strength
based on the Euclidean norm (|| · ||). Here, smaller
Euclidean distance between traits implies stronger trait
matching which decays exponentially with the square of
the distance. From the inverse of this similarity measure
we obtain a distance measure dij from i to j. The dis-
tance together with the direction vector uij informs the
assumed topology of the trait space, which we will sup-
pose for our purposes to be two dimensional, with trait
vector ai = (xi, yi) ∈ R

2 for species i; they are defined
as:

dij = e
||ai−aj||

2

2 uij =
aj − ai

||aj − ai||
(1)

We assume that the evolutionary or selective force expe-
rienced by a population in our model is dependent on this
assortativity distance, which takes the form of an inverse
Gaussian with standard mean and variance. Note that
this is one form of the proposed matching distance and
other forms may be applicable depending on context.
The selective force itself can be derived from a field,

Φ mediated by interactions propagated by individuals
within populations residing in a community of N species.
If we further suppose that these populations are mixed
homogeneously then their interaction frequency could be
assumed to be governed by mass action. We propose one
possible way to decide on adaptive interaction strength
is given by supposing that interaction strength deterio-
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rates radially from the propagating population’s position
in trait space with distance defined by the assortitive dis-
tance (Eq. (1)). If the same rules of point propagation
apply as in physics then there exists an inverse square
relationship between trait distance and adaptive inter-
action strength. Lastly, the nature and adaptive capac-
ity (maximal strength) of interactions between species
are specified by an N × N matrix K which is static in
our formulation. From these proposed selection and fre-
quency rules we arrive at a set of second order evolution-
ary field equations which determine the field strength
Φi = (Φx

i ,Φ
y
i ) experienced in trait space by species i

with population mass mi.

Φi =

N
∑

j=1

kij
mimj

d2ij
uij (2)

The combination of the kij and kji interaction coeffi-
cients define the type (mutualistic, predatory, competi-
tive etc.) and maximum potential interaction strength
between species i and j. These types are characterised
by the effect that interaction with members of species
j usually has on the fitness and abundance of members
of species i and can be either antagonistic (kij < 0) or
beneficial (kij > 0). Interactions resulting in changes at
the population level translate into slower changes at the
adaptive level through repulsive (kij < 0) or attractive
(kij > 0) field effects on species i with respect to j in
trait space. In general kii < 0 and represents the neg-
ative intra-specific relationship between population den-
sity and the availability of environmental resources such
as territory.
These kij factors determine the maximum potential in-

teraction strength because of the bound imposed by the
electrostatic or gravity-like inverse squared law given by
the assortative distance in Eq. (3). Since there are no
constraints on the signs of the kij and kji pairs, this
allows for the set up of pseudo-gravitational adaptive
competitions (a combination of push pull and chase be-
haviours) between i and j. These games operate simi-
larly to systems of arbitrarily signed masses (population
masses in our biological context) governed by electro-
static (or gravitational) attraction or repulsion [43].
The number of mutations which occur in a popula-

tion shapes the capacity for evolutionary change to oc-
cur rapidly. This population mutation rate (θi) is defined
as the product of population mass (mi) and individual
mutation rate (µi). We propose that under the force of
selection, mutation defines the proportion of that force
that can be converted into adaptive trait change, that is,
in a mechanical sense, the population mutation rate θi
can be likened to the quantity given by acceleration over
force in mechanics ( a

F
for force F and acceleration a) or

the inverse of mechanical inertia ( 1

m
for inertial mass m).

This conception of evolutionary inertia is consistent with
classical theories in AD including a special case of the
canonical equation when one considers the second order
time derivative [12].

However, overcoming inertia alone is not enough to
lead to rapid adaptive change as there are many other
constraints which slow the rate of adaptation in a pop-
ulation such as the time-dependent considerations of fi-
nite gene flow and generation time [44, 45]. These con-
straints may have a dampening effect on the speed of
adaptive change by hampering the non-synonymous mu-
tation rate [46]. We summarize such effects as a frictional
term which affects the rate of evolutionary change, choos-
ing to model this evolutionary damping force by taking
inspiration from models of fluid drag in physics, where
friction scales with the square of the adaptive velocity
(rate of trait change), with drag coefficient fi < 0. Com-
pleting the analogy with physics we suppose that adap-
tive change on a species i is affected through the selec-
tive force on that species (Φi) plus those frictional terms
(f) which resist against rapid adaptive change, scaled by
the inverse of evolutionary inertia (θi). The evolutionary
equations of motion are thus given by Eq. (2), to arrive
at an equation for evolutionary acceleration in the traits
ai,

d2ai

dτ2
= θi

[

Φi + fi
dai

dτ

∣

∣

∣

∣

dai

dτ

∣

∣

∣

∣

]

(3)

where adaptation operates at a slower time scale τ when
compared to the community population dynamics.
The complete description of the eco-evolutionary sys-

tem requires the specification of population dynamics
equations which are influenced by changes in interac-
tion strength brought about by adaptive change. Here
we considered a two species, predator-prey system with
prey mass m1, and predator massm2. We again assumed
homogeneous mixing of populations with simplified func-
tional response (other more complex functional forms
may be appropriate in other specific contexts). This leads
to a simple Lotka-Volterra like set of population dynam-
ics equations that are modulated by interaction strength,
type and frequency in the same way as the field strength
in Eq. (2).

dm1

dt
=

[

r1 + k11m1 +
k12

d2
12

m2 +
k1s

d2
1s

ms

]

m1 (4)

dm2

dt
=

[

r2 + k22m2 +
k21

d2
21

m1

]

m2 (5)

(See Eq. (A.1) and (A.2) for parametrisation.) The two
separate time scales τ and t are such that T = dτ

dt
< 1,

but, since adaptation is assumed to occur according to
a second order process, this means that T 2 is the time
scale factor of relevance to the higher order dynamics.
Here class s represents a stationary resource which we
introduced to maintain the community and can be con-
sidered a density-independent environmental resource or
to be sufficiently abundant to be unaffected by prey con-
sumption (i.e. it has a fixed density of ms = 1). It is also
non-adaptive, existing at a fixed position at the origin
in trait space (i.e. as = 0). This model does not treat
intraspecific competition, represented by kii (defined in
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Eq. (4) and (5)), or death rate ri as adaptive. These
parameters are thus independent of trait distance and
matching in this particular model but could be made so
in other more complicated versions of the model.

III. DIMENSIONALITY AND CHAOS

Numerical simulations of the two-species system, as
defined in Sec. II and parametrised in Eq. A.1 and A.2,
was carried out over a period of arbitrary time units, TU
[47]. FIG. 1 shows the results of simulation of a typical
trajectory (after exclusion of 104 TU of transient) for the
case where the relationship between prey and predator in-
traspecific competition (kii) is k11 = −0.5 > k22 = −0.8,
with 1.1 = µ1 > µ2 = 1. The system exhibits aperi-
odic cycling at the trait and population levels. Strong
positive correlation (ρXY = 0.68), evident between inter-
species trait distance and prey abundance, indicates that
an assortative force generated by a pseudo-gravitational
field can lead to population fluctuations closely linked to
co-evolutionary change.
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FIG. 1. (Colour Online) Aperiodic predator-prey system be-
haviour at both the trait and population levels plotted for 400
time units (TU) in the case where prey intraspecific compe-
tition, k11 = −0.5. (a.) Log abundance-abundance and (b.)
abundance-time for prey (m1 - top, black curve) and preda-
tor (m2 - bottom, magenta curve). (c.) Prey (a1 - black
curve) and predator (a2 - lighter, magenta curve) trait space
dynamics in a 2D trait space that shows aperiodic orbiting of
the fitness optimum. (d.) Euclidean distance (||a1 − a2||) be-
tween predator and prey in trait space exhibiting stationary
aperiodic behaviour.

The correlation dimension, D2, is an established mea-
sure of the fractal dimension of chaotic attractors [48]
which is defined in terms of the distribution of randomly
sampled points on the attractor. Calculating the corre-

lation dimension, D2, requires the computation of the
correlation integral which can be approximated with real
or simulated time series of size N by the correlation sum
C(r). The correlation sum [49] is a weighted count of
points from the series within a given radius r, of each
other.

C(r) =
2

(N − c)(N − 1− c)

N
∑

i=1

i−c
∑

j=1

H(r − ||xi − xj||)

Here H(x) is the Heaviside step function, || · || is the Eu-
clidean norm and xi are time-indexed points from a mul-
tidimensional time series. The integer c defines a corre-
lation length, and is used to exclude values that are close
neighbours in time. The following relationship holds be-
tween the fractal dimension D2, the radius r and the
correlation sum, C(r):

C(r) ∝ rD2 (6)

Due to this power law D2 is approximated by the slope
of the scaling region of the log-log plot of C(r) versus
r. From FIG. 2 this gives an estimate of D2 ≈ 5.7 for
the correlation dimension of the attractor. D2 depends
on the choice of scaling region and the value of parame-
ters. For different values of the kij interaction coefficients
D2 takes on a value D2 ∈ [2.1, 6.3] for prey intraspe-
cific competition k11 ∈ [−0.7,−0.4] and D2 ≈ 2.1 for
k11 ∈ [−0.9,−0.8].
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FIG. 2. Log-Log plot of the correlation sum as a function
of radius when prey density, k11 = −0.5. Horizontal, dashed
lines indicate the bounds of the scaling region, where the log
sum is near linear (in accordance with Eq. (6)) with slope

D̂2 = 5.7± 0.1 (linear fit given by dashed line).

The presence of dynamical chaos in a time series can
be detected using Wolf’s algorithm [50]. This algorithm
uses the defining feature of chaos, exponential-time or-
bital divergence under small perturbations, to determine
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the largest Lyapunov exponent, λ1. In order to show that
dynamical chaos can be recovered from a variable more
likely to be observed in the field, phase space reconstruc-
tion was carried out using prey abundance (m1). The re-
construction was performed using the time-delay embed-
ding theorem of Takens [51]. An embedding dimension of
6 was chosen by taking the ceiling of the previous result
for the correlation dimension and the time-delay was ap-
proximated using the first minimum of the auto-mutual
information according to the method of Fraser and Swin-
ney [52] (FIG. 3a). Investigation of λ1 for a range of
parametrisations of prey density-dependence, k11, shows
a change in behaviour for k11 ≤ kc ≈ k22 = −0.8 (k22
is the coefficient of predator intraspecific competition)
from a positive to negligible (possibly non-positive) λ1

value, indicative of a bifurcation to chaos. This demon-
strates a potential route to chaos for this predator-prey
system dependent on the relationship between preda-
tor and prey density. The role of density-dependence
in ecological chaos and in population stability and ro-
bustness has been widely supported in theory and sim-
ulation [15, 17, 32]. This behaviour may also represent
an adaptive form of the Paradox of Enrichment presented
in a highly controversial and influential paper by Rossen-
zweig [53] in which de-stabilization of both populations
can result from lowering the resource restrictions on prey.
Transient chaotic behaviour can result from the creation
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FIG. 3. (Colour Online) (a.) Normalized, time-lagged mu-
tual information (in bits, legend given in (b.)) for the prey
population time series (m1). The dotted line shows the first
minimum (and thus the proposed delay time) as 3. (b.) Es-
timate of the Largest Lyapunov exponent (λ1) estimated by
the Wolf algorithm as the number of iterations (on a log scale)
increases. The legend shows the parametrisations of prey in-
traspecific competition corresponding with the colour (tint)
of the curve (k11) between −0.4 and −0.9.

of an unstable chaotic manifold through the crisis (pe-
riodic) or the crisis-like (quasi-periodic) route to chaos
[54]. Steady state dynamics following chaotic transients
can be periodic, quasi-periodic or even include chaotic
behaviour on a secondary attractor. Transient behaviour
can be relatively persistent and can remain even after
far exceeding the bifurcation value kc [55]. In addition
the steady state can be sensitive to any perturbations
which could cause the system to re-enter a potentially

long chaotic transient again [56]. The behaviour of the
two species system for k11 ≥ kc seems to exhibit such
chaotic transient behaviour with a quasi-periodic steady
state (FIG. 4). The combination of even the lowest levels
of noise and the presence of a chaotic repellor for k11 > kc
could lead a simple predator-prey system to persist in a
chaotic state.
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FIG. 4. (Colour Online) (a.) Transient chaotic behaviour in
species abundance when prey intraspecific competition, (k11)
is −0.9, showing prey (m1 - top, red curve, coloured as in
FIG. 3) and predator (m2 - bottom, magenta curve) time se-
ries. (b.) Time-delay reconstruction of a prey trait (x1) time
series (after transient), embedded in three dimensional space,
exhibiting high-dimensional, non-chaotic (quasi-periodic) be-
haviour.

IV. MODEL FIT TO PREY SPECIES DATA

Ecological time series were obtained from work by Mid-
dleton on the European rabbit Oryctolagus cuniculus,
gathered annually in Norfolk (site B), Eastern lowland
Britain, from 1862 to 1932 [34]. The European rabbit
has been shown to dominate the diet of lowland red foxes
(Vulpes vulpes) in all seasons. The rabbit constitutes 74%
of mass ingested annually [57]. FIG. 5 shows the results
of fitting the model using a loose minimum squared error
(SE) approach, on 104 data points (not including tran-
sient) of the simulated prey abundance. The time series
were generated using the parametrisations already ex-
plored. The model was fitted to the data by sampling at
different rates from the model (with a period of between
5TU and 70TU) using a moving window of the same size
as the data set. The least-squares error was then calcu-
lated across all such windows and values of prey density
dependence (k11 from −0.4 to −0.9) to obtain the best
fit for the data.

V. NOISE GENERATION AND SPECTRAL

COMPARISON OF MODEL WITH DATA

Pink noise describes a family of random signals termed
coloured noise which contaminate a vast range of real
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FIG. 5. (Colour Online) Model fit (dotted, green curve,
coloured as in FIG. 3) to Middleton, Oryctolagus cuniculus,
data (solid) from Norfolk B, 1932-1862, using a fitted prey
intraspecific competition coefficient (k11) of −0.7 and a fitted
sampling period of 7TU. These parameters were selected by
windowed least squares fitting from simulated time series.

world signals, including the majority of ecological time
series data [2, 58, 59]. The presence of pink noise is char-
acterised by long-term correlations in the series. It is de-
fined by the inverse relationship between the frequencies
present in the underlying signal x(t) of the time series
and the amount of energy (variation) present at each fre-
quency, known as the power spectral density, (PSD) of
the signal at f , denoted Sxx(f). The relationship can be
expressed as

Sxx(f) ∝
1

fα
(7)

where 0 ≤ α < 3 is the noise scaling exponent which
determines the rate at which power drops off with fre-
quency. Typically, any signal for which 2 > α > 0 is
said to be reddened, while noise where α ≈ 1 is known
as pink noise. In contrast, white noise is a random sig-
nal with a constant power level over all frequencies i.e.
Sxx(f) ∝ 1. A property that distinguishes pink from
white noise and which makes pink noise even more in-
teresting from a dynamical perspective is that pink noise
possesses finite fractal dimension dependent on the value
of α. This makes it more difficult to distinguish from the
underlying dynamics with the use of fractal analysis [3].
This relationship is restricted to 1 < α < 3.

D2(α) =
2

α− 1

A method for estimation of the α noise exponent, α̂, in
short, stationary ecological time series was followed, as
presented by Miramontes and Rohani [60]. This method

has been used effectively to identify exponents in series
as short as 40 data points [58]. The standard method
utilizes the direct estimation of PSD via the absolute
square of the Fourier Series. However, a more accurate
method for PSD estimation was used here, the so-called
Multitaper approach proposed by Thomson [61]. The
Multitaper method is a non-parametric method of PSD
estimation which reconstructs the spectrum by averag-
ing over pairwise-orthogonal windowed segments of the
original series (which are thus statistically independent).
This method has a number of advantages over the direct
Fourier transform in that it is not dominated by bias, and
the averaging of orthogonal data windows has the effect
of smoothing out some of the noise caused by sample
size limitations. The value of α̂ for the Middleton data
was calculated as 0.948 with a 95% confidence interval
of CI = [0.383, 1.51]. In comparison, for the fitted data
α̂ = 1.13 ∈ CI. This suggests agreement at the spec-
tral level, not just between the model and data, but also
with previous results for long ecological series. Spectral
similarities persist for longer, chaotic time series as well.

Simulated pink noise data was generated using the dig-
ital signal generation method produced by Kasdin, and
also independently by Hoskings [62, 63], which relies on
convolution of a white noise series with a transfer func-
tion. In FIG. 6, negative linear trend dominates in the
log-log PSD plots for all chaotic intraspecific competition
(k11) parametrisations. The chaotic signals mimic the
simulated pink noise data in their qualitative behaviour
(with comparable trend and slope) at all but the lowest
frequencies where higher variation is present in the pink
series, however, this discrepancy may become difficult to
notice in short ecological series. The shared negative lin-
ear trend and slope in the higher frequency log spectrum
indicates a shared power law variance drop-off relation-
ship (see Eq. (7)) between the chaotic model and noise
signals.

A non-parametric method to distinguish chaos from a
series generated by any coloured noise process has been
proposed by Kennel and Isabel, which uses a Kolmogrov-
Smirnov statistic derived from simulating the prediction
error of a large number of surrogate data. The surro-
gate data are based on the original query series with
Gaussian noise added in the frequency domain [64]. The
Kolmogrov-Smirnov statistic should behave as a standard
normal random variable under the null hypothesis of no
difference in generating distribution. Using a prediction
step size of one, this method fails to distinguish our fitted
model time series from coloured noise using a two-sided
z-test (z = −0.084 > z0.05). This is in comparison with
a value of z = −0.307 > z0.05 for the Oryctolagus cu-

niculus field data. Importantly, it can be shown that
certain ecological time series of predator-prey systems
have compositions significantly different from noise at
the 99% confidence level, suggesting that other processes
(e.g. periodic or quasiperiodic dynamics) dominate the
spectrum. Data obtained from historical fur sales records
of the Canadian lynx, Lynx canadensis, in the MacKenzie



7

0 1 2 3 4 5 6 7
-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

ln f

ln
 P

S
D

FIG. 6. (Colour Online) Log-log spectral density (variance in
each frequency) reconstructed from simulated prey population
series (m1 - colour as in FIG. 3) at a sampling period of 7/TU
(totalling 1429 data points per parametrisation), determined
by estimation from Middleton data. Includes spectra from
pink noise that has been smoothed (dotted, magenta curve),
by averaging 1000 individual signals, as well as a single rep-
resentative realization in solid pink (top-most, solid curve),
both with the same total variance (power) as the model time
series with intraspecific competition (k11) equal to −0.5. Su-
perficially similar decreasing linear trend between pink and
chaotic spectra indicates variational similarities.

River area of Canada, were obtained for the years 1821
to 1934 [35]. The test statistic calculated for these data
was z = −2.86 < z0.005. This result means that, despite
data size limitations, the test has sufficient power to de-
tect significant deviations from coloured noise in some
cases. Interestingly, fitting of the Canadian lynx data by
the same process as used for the Middleton data, gives a
non-chaotic parametrisation of best fit with intaspecies
competition, k11 = −0.8 (in the quasiperiodic region).
This demonstrates the potential of adaptive models to
explain different kinds of variation in data.

VI. DISCUSSION

We have presented an eco-evolutionary model inspired
by field ideas in physics which, using sufficiently fast
evolving traits (such as behavioural or other phenotypi-
cally plastic adaptations to predation), can explain some
of the complex patterns of population variability seen in
simple ecological systems. As one of a large class of sim-
ilar models our model is able to match the qualitative
behaviour of specific ecological time series (Oryctolagus

cuniculus). However, what sets this model apart is that
it demonstrates an instance in which high-dimensional
adaptive models can have variational distributions char-

acteristic of ecological systems in both the specific and
abstract cases. The characteristic red shift seen in the
spectral composition of our model is consistent with prior
results for the majority of ecological time series and more-
over shows that such properties need not necessarily arise
from purely stochastic processes in ecology. Our findings
do not supersede stochastic explanations but do show
how high-dimensional, deterministic ecological dynamics
(based on second order adaptive dynamics) and environ-
mental stochasticity could, under certain conditions, sus-
tain and reinforce each other leading to well-recognised
patterns of complex variation found in ecology.

The role played by intraspecific competition in trigger-
ing a bifurcation to dynamical chaos is notable in that
it is in agreement with previous theoretical and obser-
vational research on the relationship between stability,
variability and density dependence [15, 17, 32]. It also
shows an alternative route to an effect similar to the para-
dox of enrichment [53], since decreased strain on the prey
population leads to population instability in the prey and
the system as a whole.

The combination of an appropriate trait matching and
interaction frequency measure are the key components of
an evolutionary field model. The model and functional
forms we have chosen here were based on previous as-
sumptions and theories in AD and population ecology
and many other potentially viable field models of the
same general form as Eq. (2) may exist which might not
exhibit the same spectral properties. However, the ver-
satility of the framework means that these models might
also be made more application specific, based on the par-
ticular selective and demographic factors appropriate to
the ecosystem of interest. However, since the form of the
model is very general it is possible that not all formula-
tions may behave in a biologically realistic way, implying
a need for functions to be carefully chosen to fit the bio-
logical scenario.

The evolutionary field framework represents a pos-
sible explanation for commonly observed perturbations
near to fitness optima, however, it is a significant de-
parture from more orthodox AD theories. The most
striking difference is a lack of an explicit selection gradi-
ent. The selection gradient is defined as the local fitness
slope which populations experience due to the difference
in their adaptive traits (taken to be the mean pheno-
type in a relatively genotypically homogeneous popula-
tion) relative to all other populations in the community
[12, 65]. Although effects similar to the selection gradient
might be explained by topological deformations of trait
space caused by an evolutionary field, many of the emer-
gent phenomena in AD, such as evolutionary branching
[66, 67], have yet to be described fully in this context
[68, 69].

Despite these difference in approach, the principle that
ecological models demand greater capacity for complexity
than has currently been achieved is evident and remains
a major challenge for AD to overcome. The potential for
field thinking in ecology may represent an underlying me-
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chanical symmetry between ecology and physics and pro-
vide a new conceptual source for classical, game-theoretic
models. Such models could be more easily extended to
higher dimensional systems including those with multi-
ple, species and traits, with less fine tuning than is gener-
ally required from current adaptive dynamics approaches.
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Appendix: Parametrization

The full model parametrisation is presented here in a
matrix format similar to the Lotka-Volterra models on
which the population component is based.

K =

1 2 s
( )

⋆ −1 2 1
0.5 −0.8 0 2
0 0 0 s

r =
( )

−0.002 1
−0.003 2

(A.1)

µ =
( )

1.1 1
1 2

T = 0.5 f = 1 (A.2)

The ⋆ for k11 is a place holder that denotes the changing
value of prey density-dependence (k11) between sections
and figures. Curves (such as spectral and prey density,
m1, plots) derived from simulations where k11 takes on a
specific value, have a corresponding colour scheme. This
colour scheme for k11 is illustrated in Table I with val-
ues repeated in the order they appear (names of colours
are tinted according to their grey-scale value). Other
colours are specified when considering other system (or
noise model) variables for a specific value of the density-
dependence (k11).

TABLE I. Colour scheme for prey density dependence (k11)

k11 −0.5 −0.4 −0.5 −0.6 −0.7 −0.8 −0.9

colour black cyan black yellow green blue red
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Proc. R. Soc B. 273, 983 (2006).
[12] U. Dieckmann and R. Law, J. Math. Biol. 34, 579 (1996).
[13] J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A.
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