The Applicability of Field Theories in The Population Sciences MPDE 2017

Based on work by James Wilsenach, Pietro Landi & Cang Hui

7 September

Based on work by James Wilsenach, Pietro Landi & Cang Hui The Applicability of Field Theories in The Population Sciences

イロト イポト イヨト イヨ

Wilsenach, J., Landi, P., & Hui, C. (2017). Evolutionary fields can explain patterns of high-dimensional complexity in ecology. Physical Review E, 95(4), 042401.

イロト イポト イヨト イヨト

Table of Contents

1 What is a Field?

- 2 Field Theories in The Population Sciences
- 3 Evolutionary Dynamics as a Field Phenomenon
- 4 Exploring Predator-Prey Systems
- 5 Complexity & Dimensionality

イロト イポト イヨト イヨト

The Field Concept in Physics

- Creates action at a distance
- Is pervasive
- Events are co-dependent and multi-directional
- Particles as persistent events

[NASA, 2017]

・ロト ・日本 ・モート ・モート

Field Theories in Ecology: Competitive Growth

The Field Interpretation of Sociological Change

- Dynamic
- Driven by motivation
- Consistent Universal Framework
- Qualitative
- Networks similar to Ecology

Adapted from Burnes & Cook (2013), Kurt Lewin's Field Theory: A Review and Re-evaluation. International Journal of Management Reviews, Vol. 15, 408–402 www.sidesmythosubts.com

イロン イヨン イヨン イヨン

Field Theories in Ecology: Competitive Growth

イロト イポト イヨト イヨト

Relationships Between Tree Growth & Spacing

• Familiar inverse square law

Field Theories in Ecology: Competitive Growth

Relationships Between Tree Growth & Spacing

- Familiar inverse square law
- static predictors
- widely used

イロト イポト イヨト イヨト

What We Mean by Evolutionary Dynamics

Based on work by James Wilsenach, Pietro Landi & Cang Hui The Applicability of Field Theories in The Population Sciences

イロト イポト イヨト イヨト

Evolution as a Dynamic Field

Based on work by James Wilsenach, Pietro Landi & Cang Hui The Applicability of Field Theories in The Population Sciences

イロン イヨン イヨン イヨン

Evolution as a Dynamic Field

- An Evolutionary Field depends locally on:
 - Interaction frequency $m_i m_i$
 - ecological relationships k_{ij}
 - trait attunement $\frac{k_{ij}}{d_{ij}^2}$

- 4 回 2 - 4 □ 2 - 4 □

Evolution as a Dynamic Field

- An Evolutionary Field depends locally on:
 - Interaction frequency $m_i m_i$
 - ecological relationships k_{ij}
 - trait attunement $\frac{k_{ij}}{d_{ij}^2}$
- Influences
 - Trait space topology
 - 2 trait attunement
 - community composition

・ 同 ト ・ ヨ ト ・ ヨ ト

Evolution as a Dynamic Field

- An Evolutionary Field depends locally on:
 - Interaction frequency $m_i m_i$
 - ecological relationships k_{ij}
 - trait attunement $\frac{k_{ij}}{d_{ii}^2}$
- Influences
 - Trait space topology
 - Itrait attunement
 - community composition

イロト イヨト イヨト イヨト

Evolution as a Dynamic Field

Based on work by James Wilsenach, Pietro Landi & Cang Hui The Applicability of Field Theories in The Population Sciences

イロト イポト イヨト イヨト

Trait Space Topology

Based on work by James Wilsenach, Pietro Landi & Cang Hui The Applicability of Field Theories in The Population Sciences

イロン イヨン イヨン イヨン

Trait Space Topology

- many possibilities
- assortative selection: $d_{ii}^2 = e^{-||\mathbf{a_i} - \mathbf{a_j}||^2}$
 - not explosive
 - versatile

・ロト ・日本 ・モート ・モート

Constraints on Evolutionary Acceleration

Based on work by James Wilsenach, Pietro Landi & Cang Hui The Applicability of Field Theories in The Population Sciences

イロン イヨン イヨン イヨン

Constraints on Evolutionary Acceleration

- mutation pool limits rapid adaptation
 - $\theta_i = \mu_i m_i$
 - versatile
- drags on evolution
 - $f \propto v_i^2$
 - generational/spatial
 - terminal velocity

イロン イヨン イヨン イヨン

Field & Motion Equations

$$\boldsymbol{\Phi}_{\mathbf{i}} = \sum_{j=1}^{N} \frac{k_{ij} m_{i} m_{j}}{d_{ij}^{2}} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}})$$
(1)
$$\frac{d^{2} \mathbf{a}_{\mathbf{i}}}{d\tau^{2}} = \theta_{i} \left[\sum_{j=1}^{N} \frac{k_{ij} m_{i} m_{j}}{d_{ij}^{2}} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}}) - \mathbf{f}_{\mathbf{i}} \right]$$
(2)

イロン イヨン イヨン イヨン

Field & Motion Equations

$$\mathbf{\Phi}_{\mathbf{i}} = \sum_{j=1}^{N} \frac{k_{ij} m_i m_j}{d_{ij}^2} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}})$$
(1)
$$\frac{d^2 \mathbf{a}_{\mathbf{i}}}{d\tau^2} = \theta_i \left[\sum_{j=1}^{N} \frac{k_{ij} m_i m_j}{d_{ij}^2} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}}) - \mathbf{f}_{\mathbf{i}} \right]$$
(2)

イロン イヨン イヨン イヨン

Field & Motion Equations

$$\mathbf{\Phi}_{\mathbf{i}} = \sum_{j=1}^{N} \frac{k_{ij} m_i m_j}{d_{ij}^2} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}})$$
(1)
$$\frac{d^2 \mathbf{a}_{\mathbf{i}}}{d\tau^2} = \theta_i \left[\sum_{j=1}^{N} \frac{k_{ij} m_i m_j}{d_{ij}^2} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}}) - \mathbf{f}_{\mathbf{i}} \right]$$
(2)

イロン イヨン イヨン イヨン

Field & Motion Equations

$$\mathbf{\Phi}_{\mathbf{i}} = \sum_{j=1}^{N} \frac{k_{ij} m_i m_j}{d_{ij}^2} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}})$$
(1)
$$\frac{d^2 \mathbf{a}_{\mathbf{i}}}{d\tau^2} = \theta_i \left[\sum_{j=1}^{N} \frac{k_{ij} m_i m_j}{d_{ij}^2} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}}) - \mathbf{f}_{\mathbf{i}} \right]$$
(2)

イロン イヨン イヨン イヨン

Field & Motion Equations

$$\mathbf{\Phi}_{\mathbf{i}} = \sum_{j=1}^{N} \frac{k_{ij} m_i m_j}{d_{ij}^2} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}})$$
(1)
$$\frac{d^2 \mathbf{a}_{\mathbf{i}}}{d\tau^2} = \theta_i \left[\sum_{j=1}^{N} \frac{k_{ij} m_i m_j}{d_{ij}^2} \mathbf{u}(\mathbf{a}_{\mathbf{j}}, \mathbf{a}_{\mathbf{i}}) - \mathbf{f}_{\mathbf{i}} \right]$$
(2)

イロン イヨン イヨン イヨン

Fox and Rabbit Case Study

Based on work by James Wilsenach, Pietro Landi & Cang Hui The Applicability of Field Theories in The Population Sciences

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Population Dynamics

$$\frac{dm_1}{dt} = \left[r_1 + k_{11}m_1 + \frac{k_{12}}{d_{12}^2}m_2 + \frac{k_{1s}}{d_{1s}^2}m_s\right]m_1$$
(3)
$$\frac{dm_2}{dt} = \left[r_2 + k_{22}m_2 + \frac{k_{21}}{d_{21}^2}m_1\right]m_2$$
(4)

イロン イヨン イヨン イヨン

Population Dynamics

$$\frac{dm_1}{dt} = \left[r_1 + k_{11}m_1 + \frac{k_{12}}{d_{12}^2}m_2 + \frac{k_{1s}}{d_{1s}^2}m_s\right]m_1$$
(3)
$$\frac{dm_2}{dt} = \left[r_2 + k_{22}m_2 + \frac{k_{21}}{d_{21}^2}m_1\right]m_2$$
(4)

イロン イヨン イヨン イヨン

Population Dynamics

$$\frac{dm_1}{dt} = \left[r_1 + k_{11}m_1 + \frac{k_{12}}{d_{12}^2}m_2 + \frac{k_{1s}}{d_{1s}^2}m_s\right]m_1$$
(3)
$$\frac{dm_2}{dt} = \left[r_2 + k_{22}m_2 + \frac{k_{21}}{d_{21}^2}m_1\right]m_2$$
(4)

イロン イヨン イヨン イヨン

Model Fit to Rabbit Data

General System Behaviour

Properties of Pink Noise

- everywhere in ecology
- long memory

• fractal dimension
$$\frac{2}{\alpha-1}$$

Contreras, M. A., Affleck, D., and Chung, W. (2011). Evaluating tree competition indices as predictors of basal area increment in western montana forests.

Forest Ecology and Management, 262(11):1939–1949.

- Goldberg, A. D., Allis, C. D., and Bernstein, E. (2007). Epigenetics: a landscape takes shape. *Cell*, 128(4):635–638.
 - NASA (2017).

Representation of earth's invisible magnetic field — nasa. https://www.nasa.gov/mission_pages/sunearth/news/ gallery/Earths-magneticfieldlines-dipole.html. (Accessed on 09/03/2017).

・ロト ・回ト ・ヨト ・ヨト